

International Journal of Ayurvedic Medicine, Vol 13 (3), 2022; 783-791

In-silico and in-vitro toxicological evaluation of Tiktakam kashayam

Research Article

Rajinikanth B¹, Perumal Pandurangan^{2*,} Ayisha H³, Fahmitha AK³, Hanna AN³, Sumy Susan Biju³

 Professor and HOD, Department of Pharmacology, Grace College of Pharmacy, Palakkad, Kerala. India.
 Professor and HOD, Department of Pharmaceutical Chemistry, The Dale View College of Pharmacy and Research Centre, Punalal, Thiruvananthapuram, Kerala. India.

3. Department of Pharmacology, Grace College of Pharmacy, Palakkad, Kerala. India.

Abstract

Inflammatory bowel disease is a chronic disease characterized by gastro intestinal tract inflammation. Antinflammatory drugs help to decrease the inflammation of the digestive tract but having lot of side effects. Many ayurvedic formulations shows promising effect for IBD, but there is no scientific evidence for its toxicity; hence *"Tiktakam Kashayam"* ayurvedic formulation is selected for the study and evaluated by *in-silico and invitro studies*. *Insilico* study is done by using PASS online software. *In-vitro* heavy metal analysis and cytotoxicity was evaluated by MTT assay. *Insilico* studies shows anti-inflammatory activity and also having anti-neoplastic activity especially colon cancer. Some important toxicities like hepatotoxicity shown by the compound azadirachtin present in *Azadiracta indica*, neurotoxic shown by the compound biflorne present *Inoldenlandia corymbosa*, Ototoxicity shown by the compound sweroside, reproductive dysfunction produced by the compound luteolin present in *Gentiana kuro*. Neurotoxic by kobusone, respiratory failure by swertiamarin, ototoxicity by sweroside present in the plant *swertia chirayata*. Parkinsonism like effect produced by the compound piperine and pipperitin by *Piper longum*. *In-vitro* heavy metal analysis shows lead and mercury below the detection limit, cadmium not detected and arsenic is present below the approved range. The ayurvedic formulation *"Tiktakam Kashayam"* possess anti-inflammatory activity and will be beneficial for the treatment of inflammatory bowel disease

Key Words: Ayurvedic formulation, Piper longum, Azadiracta indica, Inflammatory bowel disease, Hepatotoxicity.

Introduction

Inflammatory bowel disease (IBD) is a chronic and life-long disease characterized by gastro intestinal tract inflammation (1). It is a group of chronic idiopathic inflammatory disease of the gastrointestinal tract with symptoms evolving in a relapsing and remitting manner (2). It occurs in genetically susceptible individuals after an exaggerated immune response to a normal stimulus such as food and intestinal flora (3).

Inflammation anywhere along the digestive tract interferes with this normal process. IBD can be very painful and disruptive. In rare cases, it may even be life threatening (4). This inflammatory condition encompasses two major forms (5), known as:

- 1. Ulcerative colitis(UC)
- 2. Crohn's disease (CD)

* Corresponding Author:

Perumal Pandurangan

Professor & HOD,

Department of Pharmaceutical Chemistry, The Dale View College of Pharmacy and Research Centre, Punalal, Thiruvanathapuram, Kerala, India. Email Id: perupharma78@gmail.com

The highest rates of IBD are assumed to be in developed countries, and the lowest are considered being in developing regions; colder-climate regions and urban areas have a greater rate of IBD than those of warmer climates and rural areas. Internationally, the incidence of IBD approximately 0.5-24.5 cases per 100,000 person-years for Ulcerative colitis and 0.1-16 cases per 100,000 person years for Crohn's disease. Overall, the prevalence for IBD is 396 cases per 100,000 person annually (6). Last comparative population study in Asia found that the incidence of IBD varied across Asia ranging from 0.54 per 100,000 to 344 per 100,000 persons (7). A review of IBD reported that the prevalence of Crohn's disease in North America was 319 per 100,000 persons. Prevalence rates of ulcerative colitis were 249 per 100,000 persons, in North America and 505 per 100,000 persons in Europe (6). The risk of developing ulcerative colitis in children of migrants from low incidence to high- incidence countries is similar to non-immigrants (8). Time trend analyses showed statistically significant increase in the 100,000 person-year in Asia and the Middle East. Time trend analyses showed statistically significant increase in the incidence of IBD over time. Regional differences in UC and CD have been reported from India. The first prevalence figure of 42.8/100,000 patients for UC from Haryana and in 2003, reported a similar prevalence of 44.3/100,000 while screening 51,910 people from

Rajinikanth B et.al., In-silico and in-vitro toxicological evaluation of Tiktakam kashayam

Punjab. Both these population-based studies are, however, from select North Indian population and do not in any way represent the true burden of IBD in the Indian subcontinent. But these figures are only onethird to one-sixth of the population-based studies from Canada, North America or the UK. In a national survey from India in, UC was equally prevalent in the northern and southern States of the country. Inflammatory bowel disease (IBD) burden is increasing at a rapid pace in India and other Asian countries and with total population into consideration, India is projected to have among the highest IBD burden across the globe, despite having lower prevalence as compared to the West (6). The Crohn's and colitis foundation of America (CCFA) estimates that around 3.1 million people in the United States have IBD. Many diseases are included under the umbrella term IBD. The two most common ones are Ulcerative colitis and Crohn's disease (4). Ulcerative colitis usually presents with bloody diarrhoea and it is diagnosed by colonoscopy and histological findings. Ulcerative colitis can be debilitating and can sometimes lead to life threatening complication (9). Types of ulcerative colitis include Ulcerative proctitis, Proctosigmoiditis, Left sided colitis, Pancolitis (10). Crohn's disease is a chronic relapsing inflammatory bowel disease. It is characterized by a transmural granulomatous inflammation which can affect any part of the gastrointestinal tract, most commonly the ileum, colon or both. A recent study in which all new CD cases in Finland between 2000 and 2007 were included revealed an overall incidence rate of 9.2 per 100 000 inhabitants (11).

Ayurvedic formulation

Ayurveda, the traditional Indian medicinal system remains the most ancient yet living traditions with sound philosophical and experimental basis. It is a science of life with a holistic approach to health and personalized medicine. It is known to be a complete medical system that comprised physical, psychological, philosophical, ethical, and spiritual health (12, 13). In Avurveda, each cell is considered to be inherently an essential expression of pure intelligence hence called self-healing science. In addition, to the self-healing concept, the use of herbal treatment is equally important in this Indian traditional system of medicine. According to the World Health Organization, about 70-80% of the world populations rely on nonconventional medicines mainly of herbal sources in their healthcare. Public interest for the treatment with complementary and alternative medicine is mainly due to increased side effects in synthetic drugs, lack of curative treatment for several chronic diseases, high cost of new drugs, microbial resistance, and emerging diseases, etc (13). According to Indian mythological concept Ayurveda originated from Brahma, the God of Creation. Hindu myth says that, Brahma wants to ease the sufferings of his creation by transferring the knowledge of Ayurveda to deities. Dhanvantari was one of those deities, who then transferred this knowledge of science to modern world. Dhanvantari is considered as "Father of Ayurveda". The last of the 'Great Three' of Ayurveda Astanga hrdaya was composed by Vagbhata. Every living and non-living entity is constituted by five primordial principles or *mahabhoota Prithvi, Jela, Theja, Agni* and *Vayu*. The tissues of the body are also composed of these five elements and their derivatives. This identity of composition is the central principle of ayurvedic therapeutics which mandates the choice of drugs and food without causing side effects (14).

Ayurvedic formulations for IBD (14)

- Tiktakam kashyam
- Guluchayadi kashayam
- Nyagrodhadhi kashayam
- Mahatiktakam kashayam
- Laksha choornam
- Lodhra choornam
- Setubandham choornam
- Astakashari gulika

Tiktakam kashayam

Tiktakam kashayam is a Ayurvedic formulation for IBD having the following ingredients is shown in the table no1 and its chemical constituents is listed in table no 2.

Table.1- Ingredients of Tiktakam Kashayam	Table.1-	Ingredients	of T	'iktakam	Kashayam
---	----------	-------------	------	----------	----------

SL. No	Officinal part	Botanical name	Parts used	Quantity
1	Patola	Trichosanthes lobata Wall.	Preliminar y Leaf	1.425g
2	Nimba	Azadirachta indica, A.Juss	Stem bark	1.425g
3	Katuka	Neopicrorhiza Scrophulariiflora (Pennell) D.Y.Hong	Root	1.425g
4	Darvi	Berberis aristata DC	Root	1.425g
5	Patha	<i>Cyclea peltata</i> (Lam.) Hook.f. & Thomson	Root	1.425g
6	Duralabha	Tragia involucrata L.	Root	1.425g
7	Parpata	Hedyotis corymbosa (L.) Lam.	Preliminar y Leaf	1.425g
8	Trayamana	Gentiana kurroo (Royle)	Root	1.425g
9	Musta	<i>Cyperus rotundus</i> L.	Root	1.425g
10	Bhunimba	Swertia chirayita (Roxb.)	Preliminar y Leaf	1.425g
11	Kalinga	Wrightia antidysenterica R. Br.	Seed	1.425g
12	Kana	Piper longum L.	Fruit	1.425g
13	Chandana	Santalum album L.	wood	1.425g

International Journal of Ayurvedic Medicine, Vol 13 (3), 2022; 783-791

	Plant Name	Ayurvedic Formulation		T · ·
51.INO		Constituents 1. Octanoic acid 2. Dodecanoic acid 3. Octadecane 4. Enoic acid	6	Tragia ii (Duralai
1	Trichosanthes lobata (patola)	 Elloic acid Hexanoic acid Quinazolin-8-one Ilicic acid Pentadecanoic acid Oxaspiro Benzene acetic acid 3 Beta-cucurbita-5,24-dien-3-ol Alpha carotene Beta carotene Lycopene Lutein 	7	<i>Hedyotis</i> (parpata
		 13. Eutenin 16. Ascorbic acid 17. Beta- sitosterol 1. Nimbn 2. Quercetin 3. Ascorbic acid 	8	Gentiand (trayama
2	Azadirachta indica (Nimba)	 Azadirachtin Salanin N-hexacosanol Beta-sitosterol Nimbidin Nimbinene Nimbolide Nimbolide Nimbolidin Acadiradione Azadiradione Azadirone Scopoletin Rutin Myricetin Vilasinn Behenic acid 	9	Cyperus
3	Neopicrorhiza scrophularflora (katuka)	 Picroside IV Specioside Verminoside Aucubin Abeloside A Sweroside Picrorhizaoside Cinnamic acid Scrophuloside 7-Hydoxy coumarin Hebitol III Galic acid Isoferulic acid Vanillic acid Hexacosanol 	11	(bhunim Wrightia antidyse (kalinga
4	Berberis aristata (Darvi)	 Taxilamine Palmatine Oxyberberine Tetrahydrodropimatine Jatrorhizine Pakistanine 	12	Piper lo
5	Cyclea peltata (patha)	 Cyclea peltin Cycleadrine Cycleonorine Cycleohomine chloride Cycleocurine 	13	Santalur (chandh

dicine,	Vol 13 (3), 2022; 783-7	91
6	Tragia involucrata (Duralabha)	 2,4-dimethyl hexane 2,4-dimethyl heptane 2-methyl nonane Friedelan-3-one Rutin Quercetin Stigmasterol
7	<i>Hedyotis corymbosa</i> (parpata)	 Geniposide Asperuloside Rutin Aspenicosidic acid Scendoside methyl ester Oleanolic acid Y-sitosterol 6-alpha hydroxy geniposide Iridoid glycoside Biflorine
8	Gentiana kurro (trayamanna)	 Sweroside Gentiopicroside Amarogentin Robinetino Luteolin Apigenin Swertiamarin
9	Cyperus rotundus Swertia chirayita (bhunimba)	 2-cyperone Cyperone Cyperotundone Cyperol Beta selinene Isocyperol Sitosterol Valerenal Sugeonyl acetate 2-copaene Kobusone Isokobusone Sugenol Beta caryophyllene Sugetnol Gentiopicrin Sweroside Swertiamarin
11	Wrightia antidysenterica (kalinga)	 Amerogentin Stigmasterol Campesterol Indigo Indirubin Isatin Methyl anthranilate Rutin Cyclo arthrenone Alpha amyrin Beta amyrin Beta sitosterol 14-alpha methyl zymosterol
12	Piper longum (kana)	 Piperine Pipperitin Piperlongumin Piplartin Guineensine Pellitorine Brachystamide B
13	Santalum album (chandhana)	 Alpha santalene Beta santalene Epi beta santalene Z-alpha santalol Z-alpha trans bergamotol

Rajinikanth B et.al., In-silico and in-vitro toxicological evaluation of Tiktakam kashayam

Based on the above complete review *In-silico* toxicological evaluation of the compounds present in "Tiktakam Kashayam". *In-vitro* toxicity evaluation by Heavy metal analysis and MTT Assay.

Materials and Methods

Materials and Instruments

All the chemicals were purchased from Thermo fisher scientific, MTT staining solution from Sigma Aldrich, Bilirubin kit, Urea kit, Creatinine kit, Glucose kit from AGAPPE diagnostics Ltd. Eosin, OG6, EA36 from Merck. Inductively coupled plasma mass spectrometer from Agilent Technologies, Micro digestion system from MARS-6, Micro plate from Thermo fisher scientific, Centrifuge from REMI, Refrigerator from Whirlpool, Electronic weighing balance from WENSAR, Semi auto analyzer and Micro pipettes from MISPAVIVA.

Methods

In- Silico Toxicological evaluation

PASS is a computer aided software tool that predicts the biological activity spectrum of different compounds based on their structure. The prediction result depends on the analysis of structure activityrelationships for more than 250,000 biologically active substance including drugs, drugs- substances, leads and toxic substances. PASS online has the ability to predict over 4000 different kinds of biological activities that include therapeutic effects, toxic effects, adverse effects, enzyme interaction, mechanism of action etc. This is one of the most successful programs giving early indications about compound that it might be useful. The biological activity spectrum of a chemical compound is the collection of various types of biological activities that indicates the output of its interaction with different biological molecules. Pa (probability "to be active") evaluates the possibility that the predicted compound belongs to the category of active compounds. Pi (probability "to be inactive") evaluates the possibility that the predicted compounds belongs to the category of inactive compounds (15).

Steps involved in pass:

Step I: Navigation of the PASS online web page:

Enter the words "PASS Prediction" in any of web browsers and it allow the direct access to the pass online. A free registration can be done and after logging, use the prediction page of the online program for prediction of component of interest.

Step II: Drawing the structure of molecule:

PASS online prediction tool uses the 2D structure of the components, which forms the basis for the prediction as an input hence the structure can be drawn using Chemsketch version 12 and uploaded in the PASS website as a (*.mol) file or it can be-directly drawn on the website using JAVA that uses a drawing program called Marvin Sketch.

Step III: Prediction output

The input structure which was drawn in the second step its activities are now compared with the structures with known activities present in the database of the program.

Bayesian approach being the principal of estimation, the prediction tool with predicts Pa: Pi ratio of the input substance. The output is given in the form different biological activities in descending of their probability ratios (16).

In-vitro toxicity stidues a. Heavy metal analysis (17)

Standard Preparation

Preparation of 1ppm stock solution

1ppm stock solution is prepared by pipette 1ml of 1000 ppm standard solution to a 100 ml standard flask and make up to the mark using ultrapure water.

Preparation of working standard solution

0.5ppb, 5ppb, 50ppb, 100ppb,200ppb, 250ppb and make up to the mark using HPLC water.1ml of 20%extrapure concentrated HNO3 were added to the standard flask prior to make up to mark.

Sample preparation

0.25g to 0.5g sample is weighed accurately in to MDS (Microwave digestion system) digestion tube. Add 5.0ml conc. HNO3 (extra pure), and 0.5 ml HCl (extra pure), and 1.0 ml H2O2 (extra pure), and allow 15 min self-digestion. Tighten the cap and keep for digestion in the MDS. After digestion quantitatively transfer the contents into 50 ml tube and make upto50 ml using extra pure water.

Calculation

Element $(\mu g/l)$ =concentration from calibration graph $(\mu g/l) \times dilution$ factor.

MTT assay (18) Protocol-Cytotoxicity

The cells were seeded a 96- well plate flat-bottom micro plate at 37°C in 95% humidity and 5% CO₂ for overnight. Different concentrations (100, 50, 25, 12.5, 6.25, 3.125μ g/ml) of samples were treated. The cells were incubated for another 48 hours. The wells were washed twice with PBS and 20µL of the MTT staining solution was added to each well plate and plate was incubated at 37 °C. After 4h, 100µL of DMSO was added to each well to dissolve the formazan crystals, and absorbance was recorded with a 570 nm using micro plate reader(1).

Formula

Surviving cells (%) = mean OD of test compound/ mean OD of negative control x100

Using graph pad prism version 5.1, we calculate the IC 50 of compounds.

International Journal of Ayurvedic Medicine, Vol 13 (3), 2022; 783-791

Results and Discussion In-Silico Toxicity studies Table 3: Pharmacological and toxicological activity of plant constituents

Plants	Plant constituents			Pharmacological activity			gical activity
		Pa	Pi	Activity	Pa	Pi	Activity
Trichosanthes	a. Lutein	952	2	CYP2J substrate	915	9	Diarrhea
lobata (patola)		913	5	Antineoplastic	894	9	Ocular toxicity
		895	2	Radioprotector	892	12	Conjunctivitis
		815	4	Anti-ulcerative	886	13	Toxic
	b. Ascorbic acid	948	2	Vasoprotector	900	3	Allergic contact dermatitis
		928	3	Antioxidant	892	3	Hyperglycemic
		845	1	Chemoprotective	895	11	Diarrhea
		779	8	Antiinflammatory	842	11	Tachycardiac
	c. Lycopene	812	3	Antioxidant	893	7	Anemia
	v I	783	1	Antiviral (Rhinovirus)	885	13	Conjunctivitis
		753	5	Dermatologic	861	4	Skin irritation, high
		754	10	Antiinflammatory	856	4	Hyperglycemic
Azadirachta	a. Nimbin	936	4	Antineoplastic	Nil	Nil	Nil
indica (Nimba)		895	3	Prostate cancer treatment	Nil	Nil	Nil
		880	4	Antineoplastic (colorectal cancer)	Nil	Nil	Nil
	b. Azadira chtin	939	4	Antineoplastic	918	9	Toxic
		891	4	Antiinflammatory	10		10
		741	8	Antifungal	752	27	Hepatotoxic
		702	6	CYP2A11 substrate	102		neputotome
	c. Gedunin	935	4	Antineoplastic	791	29	Toxic
		777	4	CYP3A4 inhibitor	//1	2)	TOALC
Neopicrorhiza scrophularflora (katuka)	a. Isoferulic acid	944	4	Membrane integrity agonist	839	7	Urine discoloration
		915	3	JAK2 expression inhibitor	819	4	Irritation
		913	1	Aryl sulfotransferase inhibitor	819	4	Hypercholesterole
		903	2	Preneoplastic conditions treatment	809	3	mic Ulcer, gastric
	b. Hexacosanol	965	2	Sugar-phosphatase inhibitor	958	9	Toxic, respiration
		958	2	Alkenylglycerophosphocholine hydrolase inhibitor	940	4	Acidosis, metabolic
		952	1	Carboxypeptidase Taq inhibitor	940	5	Euphoria
		951	2	Alkylacetyl glycerophosphatase inhibitor	926	3	Eye irritation, moderate
	c. Gallic acid	955	2	Arylacetonitrilase inhibitor	939	3	Hematemesis
		954	2	Chlordecone reductase inhibitor	934	3	Ulcer, aphthous
		950	2	Dehydro-Lgulonate decarboxylase inhibitor	887	3	Gastrointestinal hemorrhage
		950	3	Testosterone 17 beta dehydrogenase (NADP+) inhibitor	878	9	Acidosis, metabolic
Berberis aristata (Darvi)	a. Taxilamine	823	27	Aspulvinone dimethylallyltransferase inhibitor	698	25	Gastrointestinal hemorrhage
		729	41	Gluconate 2- dehydrogenase (acceptor) inhibitor	674	48	Fibrillation, atrial
		709	25	Antineoplastic	588	32	Hyperuricemia
	b. Oxyberberine	777	7	Antidyskinetic	519	54	Fibrosis, interstitial
		774	4	MAP kinase stimulant	487	91	Psychomotor impairment
		773	22	Antineurotic	472	79	Depression
		716	10	Neurotransmitter uptake inhibitor	481	105	Gastrointestinal hemorrhage

				nd in-vitro toxicological evaluation of T		_	
	c. Palmatine	944	2	Male reproductive disfunction treatment	392	131	Pseudoporphyria
		870	2	Antiprotozoal	299	92	Piloerection
Cyclea peltata	a. Cyclea peltine	918	1	Histamine release stimulant	931	5	Hypotension
(patha)		897	1	Oxygen scavenger	892	4	Panic
		862	2	Leukopoiesis stimulant	882	6	Toxic, vascular
		860	8	5-Hydroxytryptamine release stimulant	843	13	Neurotoxic
	b. Cycleonorine	949	3	Spasmolytic	978	4	Hypotension
		935	1	Histamine release stimulant	977	4	Toxic, vascular
		886	1	Oxygen scavenger	929	5	Tremor
		825	3	Muscle relaxant	896	8	Dyskinesia
	c. Cycleohomine	868	2	Histamine release stimulant	946	5	Hypotension
	chloride	833	2	Oxygen scavenger	850	9	Toxic, vascular
		812	3	Muscle relaxant	848	12	Neurotoxic
		791	15	5-Hydroxytryptamine release stimulant	835	8	Tremor
Tragia	a. 2,4 - dimethyl	943	3	Phobic disorders treatment	883	9	Shivering
involucrata (Duralabha)	hexane	936	3	Acrocylindropepsin inhibitor	861	12	Pure red cell aplasia
		936	3	Saccharopepsin inhibitor	857	21	Toxic, respiration
		936	3	Chymosin inhibitor	840	4	Skin irritation, corrosive
	b. 2,4 -dimethyl heptanes	942	3	Chymosin inhibitor	905	5	Pure red cell aplasia
		942	3	Saccharopepsin inhibitor	894	7	Shivering
		942	3	Acrocylindropepsin inhibitor	903	17	Toxic, respiration
		936	3	Phobic disorders treatment	862	3	Skin irritation, corrosive
	c. 2- methylnonane	959	2	Chymosin inhibitor	922	4	Shivering
		959	2	Acrocylindropepsin inhibitor	917	5	Pure red cell aplasia
		959	2	Saccharopepsin inhibitor	913	2	Skin irritation, corrosive
		947	3	Polyporopepsin inhibitor	924	15	Toxic, respiration
Hedyotis	a. Geniposide	988	1	Hepatoprotectant	984	3	Inflammation
corymbosa		961	2	Hepatic disorders treatment	863	17	Toxic
(parpata)		955	1	Cholesterol antagonist	707	21	Hypercholesterole mic
	b. Biflorne	915	3	Anaphylatoxin receptor antagonist	880	13	Diarrhea
		914	2	Cardioprotectant	795	28	Toxic
		918	7	Membrane integrity agonist	713	27	Neurotoxic
		893	5	TP53 expression enhancer	706	40	Hematotoxic
	c. Oleanolic Acid	984 954	2 1	Caspase 3 stimulant Transcription factor NF kappa B	886 852	7 12	Muscle weakness Weakness
		054	1	stimulant	012	25	Tania
		954 937	1 2	Transcription factor stimulant Chemopreventive	813 743	25 12	Toxic Hyper-cholesterole mic
Gentiana kurro	a. Swerosi de	985	1	Antiprotozoal (Leishmania)	882	8	Inflammation
fentiana kurro (trayamanna)	a. Swerusi ue	985	9	CDP-glycerol glycerophosphotransferase inhibitor	882	8	Diarrhea
		854	7	Gluconate 2-dehydrogenase (acceptor) inhibitor	844	16	Emetic
		849	3	Antiprotozoal	820	3	Ototoxicity
	b. Amarogentin	875	3	Hepatoprotectant	895	7	Inflammation
		853	19	CDP-glycerol glycerophosphotransferase inhibitor	837	21	Toxic

	Internati	onal Jc	ournal	of Ayurvedic Medicine, Vol 13 (3), 2022	; 783-791		
	c. Luteolin	837	4	UDP- glucuronosyltransferase substrate	833	20	Diarrhea
		830	10	Gluconate 2- dehydrogenase (acceptor) inhibitor	800	22	Emetic
		978	1	Chlordecone reductase inhibitor	824	4	Genotoxic
		965	3	Membrane integrity agonist	819	16	Reproductive dysfunction
		964	3	HIF1A expression inhibitor	823	28	Shivering
		953	2	Membrane permeability inhibitor	804	17	Toxic, vascular
Cyperus	a. Alpha-cyperone	915	2	Carminative	816	10	Ataxia
rotundus		845	5	Apoptosis agonist	811	4	Irritation
(Musta)		839	1	Retinol dehydrogenase inhibitor	792	10	Non mutagenic, Salmonella
		826	8	CYP2C substrate	776	18	Excitability
	b. Cyperol	912	2	Carminative	875	4	Irritation
		899	5	Antieczematic	816	15	Respiratory failure
		894	5	Antineoplastic	755	15	Ataxia
		871	10	Testosterone 17 beta- dehydrogenase (NADP+) inhibitor	768	33	Toxic
	c. Kobusone	900	5	HIF1A expression inhibitor	821	24	Toxic
		881	5	Antineoplastic	795	18	Neurotoxic
		746	11	Antiinflammatory	729	33	Toxic, respiration
Swertia	a. Swertiamarin	954	2	Antiprotozoal (Leishmania)	934	5	Inflammation
chirayita (bhunimba)		912	8	CDP-glycerol glycerophosphotran sferase inhibitor	910	7	Respiratory failure
		898	2	Hepatoprotectant	896	8	Emetic
		791	7	Antiinflammatory	881	13	Diarrhea
	b. Amerogentin	875	3	Hepatoprotectant	895	7	Inflammation
		853	19	CDP-glycerol glycerophosphotransferase inhibitor	837	21	Toxic
		837	4	UDP-glucuronosyltransferase substrate	833	20	Diarrhea
		830	10	Gluconate 2- dehydrogenase (acceptor) inhibitor	800	22	Emetic
	c. Sweroside	985	1	Antiprotozoal (Leishmania)	882	8	Inflammation
		849	3	Antiprotozoal	850	17	Diarrhea
		843	12	Benzoate-CoA ligase inhibitor	844	16	Emetic
		811	4	Hepatoprotectant	820	3	Ototoxicity
Wrightia antidysenterica	a. Lupeol	978	2	Caspase 3 stimulant	948	3	Irritation
(kalinga)		947	1	Transcription factor stimulant	901	7	Inflammation
		950	4	Antineoplastic	822	21	Behavioral disturbance
		907	2	Hepatoprotectant	822	24	Toxic
	b. 3,4 seco-20- (29)en-3-oic	882	3	Hepatoprotectant	837	11	Inflammation
	acid	853	2	Transcription factor NF kappa B stimulant	766	33	Toxic
		853	2	Transcription factor stimulant	711	43	Toxic, gastrointestinal
Piper longum	a. Piperine	916	7	Membrane integrity agonist	724	8	Parkinsonism
(kana)		826	3	Carminative			
		814	4	Neurotransmitter uptake inhibitor			
		734	4	Sigma receptor agonist		_	
	b. Pipperitin	916	7	Membrane integrity agonist	724	8	Parkinsonism
		814	4	Neurotransmitter uptake inhibitor			
		875	8	Chymosin inhibitor	011	<u> </u>	
		875	8	Acrocylindropepsin inhibitor	811	35	Twitching
		870	8	CYP2J substrate			

Rajinikanth B et.al., In-silico and in-vitro toxicological evaluation of Tiktakam kashayam										
Santalum album	album santalene (NADP+) inhibito					7	Irritation			
(chandhana)	(chandhana)		3	Cardiovascular analeptic	708	17	Withdrawal			
b. Z alpha		894	3	Cardiovascular analeptic	751	6	Irritation			
	santalol	886	6	CYP2J substrate	702	22	Ataxia			

The results obtained from *in-silico* study by using PASS online software were shown in the table No.7 plants like: Trichosanthus lobata Wall. constituents like lutein shown anti-ulcerative, ascorbic acid show antioxidant and anti-inflammatory, lycopene show antiinflammatory. Azadaricta indica constituent nimbin produce anti-inflammatory, anti-neoplastic (colon cancer), gedunin shown anti-neoplastic. Berberis aristata constituent taxilamine shown anti-neoplastic. Cyprus rotundus plant constituent kobusone shown antiinflammatory and anti- neoplastic. Swertia chirayata swartiamarin plant constituent shown antiinflammatory. Wrightia antidysenterica plant constituent lupoel shown anti-neoplastic activity. The result obtained from in-silico study support the

In-vitro Toxicity studies Heavy metal analysis

ayurvedic formulation "Tiktakam kashayam" used for Inflammatory bowel disease. The results of the *in-silico* toxicological studies were shown in the table No.7 by PASS online software: Some important toxicities like hepatotoxicity shown by the compound azadirachtin present in *Azadiracta indica*, neurotoxic shown by the compound biflorne present in *oldenlandia corymbosa*,Ototoxicity shown by the compound sweroside, reproductive dysfunction produced by the compound luteolin present in *Gentiana kurroa*. Neurotoxic by kobusone, respiratory failure by swertiamarin, ototoxicity by sweroside present in the plant *swertia chirayata*. Parkinsonism like effect produced by the compound piperine and pipperitin by *Piper longum*.

	Table 4: Heavy metal analysis										
Parameters	Unit	Results	Specification	Detection Limit	Test Method						
Arsenic	mg/kg	0.18	NMT 3.0	0.05	CKL/ANL/AY-008						
Cadmium	mg/kg	Not detected	NMT 0.3	0.05	CKL/ANL/AY-008						
Lead	mg/kg	BDL	NMT 10.0	0.05	CKL/ANL/AY-008						
Mercury	mg/kg	BDL	NMT 1.0	0.05	CKL/ANL/AY-008						

Heavy metal analysis results were shown in the table No.4. Heavy metals like arsenic, mercury, cadmium, lead are commonly available heavy metals in ayurvedic formulations. From the results obtained from the study shown that cadmium (NMT 0.3) is not detected in the formulation. Lead (NMT 10.0) and mercury (NMT 1.0) present below detection limit. Arsenic 0.18mg/kg present in the formulation but within the normal range.

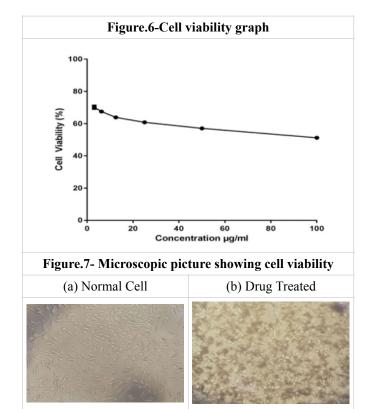

MTT ASSAY: IC 50 value of compounds (μ M/ml)

Table	5:	IC	50	value	of	sample
Indic	••	I C	00	, and c	•••	Sampie

Sample codes	HF	EK293
Sample codes	Mean	SD
Sample	44.73	0.71

Tabl	e6:	Cell	viabi	lity
C.II	• . 1. •	1°4	C IIEI	2202

Cell viability of HEK293				
Concentration µg/ml	Sample			
100	52.19	50.31	51.25	
50	56.56	57.50	57.19	
25	60.00	61.25	61.25	
12.5	63.44	64.38	63.75	
6.25	67.19	68.13	67.19	
3.125	69.69	69.38	71.56	
Negative control		100		

The result obtained from MTT assay was shown in the table No.9 and 10. MTT assay was performed in HEK293 cells and IC 50 value of the formulation "*Tiktakam Kashayam*" shown 44.43±0.71

International Journal of Ayurvedic Medicine, Vol 13 (3), 2022; 783-791

and graphical representation were shown in figure N0.6. The photographical representation of normal cells and drug treated were shown in figure No.7.

Conclusion

Based on present study results we concluded that *In-silico* study reports supports the ayurvedic formulation "*Tiktakam Kashayam*" having antiinflammatory activity and also having anti-neoplastic activity especially colon cancer. *In-vitro* heavy metal analysis shows lead and mercury below the detection limit, Cadmium-not detected and arsenic is present below the approved range.

The ayurvedic formulation "*Tiktakam Kashayam*" possess anti-inflammatory activity and will be beneficial for the treatment of inflammatory bowel disease. Further studies are required to fix the dose levels to avoid the long term toxicity.

Reference

- 1. Yeshi K, Ruscher R, Hunter L, Daly NL, Loukas A, Wangchuk P. Revisiting inflammatory bowel disease: pathology, treatments, challenges and emerging therapeutics including drug leads from natural products. J. Clini. Med. May, 2020; 9(5):1273.
- 2. Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology. Sep, 2019; 157(3):647-659.
- 3. Colombel JF, Shin A, Gibson PR. AGA clinical practice update on functional gastrointestinal symptoms in patients with inflammatory bowel disease: Expert review. Clin Gastroenterol and Hepatol. Feb, 2019; 17(3):380-390.
- 4. Vedamurthy A, Ananthakrishnan AN. Influence of environmental factors in the development and outcomes of inflammatory bowel disease. Gastroenterol. Hepatol. Feb, 2019; 15(2):72-84.
- 5. Marc Fakhooury, Rebecca Negrulj, Inflammatory Bowel Disease: Clinical Aspects and Treatments, J. Inflamm. Res. 2014; 7: 113-120.
- 6. William A Rowe, Md; Inflammatory Bowel Disease: The Global Prevalence of Inflammatory Bowel Disease, Medscape.2020 Apr 10, 2020. https://www.medscape.com/

- Kedia S, Ahuja V. Epidemiology of inflammatory bowel disease in India: the great shift east. Inflammatory intestinal diseases. 2017; 2(2):102-115.
- 8. Ryan Ungaro, Saurabh Mehandru, Patric B Allen, Laurent peyrin-biroulet, jean Frederic, Ulcerative Colitis. Lancet. Apr, 2017; 389(10080) 1756-1770.
- Danese S, Banerjee R, Cummings JF, Dotan I, Kotze PG, Leong RW, Paridaens K, Peyrin-Biroulet L, Scott G, Van Assche G, Wehkamp J. Consensus recommendations for patient-centered therapy in mild-to-moderate ulcerative colitis: the Support Therapy–Access to Rapid Treatment (iSTART) approach. Intest. Res. Oct, 2018;16 (4):522.
- 10. William Faubion, M,D., Ulcerative Colitis Mayo Clinic https://www.mayoclinic.org/ diseases-conditions/ulcerative-colitis/symptoms-causes/syc-20353326.
- 11. Francis Ha and Khalil H, Crohn's disease: a clinical update. Therapeutic advance in gastroenterology. Nov, 2015; 8(6):352-359.
- Oistein Hovde, epidemiology and clinical course of crohn's disease: results from observational studies, World J of Gastroenterol. Apr, 2012; 18(15):1723-1731.
- Ashutosh Chauhan. Ayurvedic Research and Methodology: Present Status and Future Stratagies. Ayu. Oct. 2015; 36(4):364-369.
- 14. Semwal DK, Mishra SP, Chauhan A, Semwal RB. Adverse health effects of tobacco and role of Ayurveda in their reduction. J. Med. Sci. Apr, 2015; 15(3):139.
- 15. Saper RB, Kales SN, Paquin J, Burns MJ, Eisenberg DM, Davis RB, Phillips RS. J. Am. Med. Assoc.2003; 292(23): 2868-2873.
- Parasuraman S, Prediction of Activity Spectra for Substances. J. Pharmacol. Pharmacother. 2011; 2(1): 52-53.
- 17. George Latimer. Official Methods of Analysis (AOAC). 21st ed. Rockville; Oxford University Press;2019.
- Kumbar VM, Peram MR, Kugaji MS, Shah T, Patil SP, Muddapur UM, Bhat KG. Effect of Curcumin on Growth, Biofilm Formation and Virulence Factor Gene Expression of Porphyromonas Gingivalis. Odontology. Jan, 2021; 109(1):18-28.
