



International Journal of Ayurvedic Medicine, Vol 14 (1), 2023; 180-189

Published online in http://ijam.co.in 
  

ISSN No: 0976-5921

 
Research Article 

 

 

 

 
Key Words: Tridosha; Logistics Regression; Dimension Reduction; XGBoost; Kernel-SVM; UPDRS-II; NMSQ.  

Introduction 
Parkinson's disease (PD) is a neurodegenerative 

disease that occurs mainly in older people (1, 2). In 
modern medicinal practice the initial diagnosis of PD 
was made through the analysis of cardinal motor 
symptoms such as rigidity, bradykinesia, tremor and 
postural instability (3). In addition to these cardinal motor 
symptoms, there are several other types of motor and 
non-motor symptoms that can occur in and with PD (4, 
5). But Ayurveda follows its own diagnostic process for 
identifying diseases through dosha analysis (6-8). In 
contemporary Ayurvedic literature PD cannot be justified 
completely; although various PD symptoms have been 
classified in Ayurvedic literature (9). The most common 
disease or symptom resembling PD is Kampavata, and 
many of the other PD symptoms, mainly motor 
symptoms, through which PD is diagnosed, fall under the 
category of Vata dosha, so PD is called Vata dosha 
disorder in Ayurveda (9, 10). If we want to consider all 

the different types of motor and non-motor symptoms 
that have emerged in PD over time, we can follow 
different standard scaling systems for assessing different 
motor and non-motor symptoms associated with PD (11, 
12). 

The Unified Parkinson's Disease Rating Scale 
(UPDRS), sponsored by the Movement Disorder Society 
(MDS), helps assess Parkinson's disease through non-
motor and motor experiences of daily living and motor 
complications (13-15). The overall scaling system is 
divided into four categories, with the Daily Life motor 
experience questioners or UPDRS II questionnaires 
assisting in the identification of motor symptoms through 
patient or caregiver self-assessment (16). Similarly, the 
MDS Non-Motor Symptoms Questionnaire (NMSQ) 
follows the evolutionary technique of self-assessment for 
the estimation of non-motor symptoms (17, 18). The 
basic evolutionary technique of these two scaling systems 
is through the scoring method, in which a subject is 
scored depending on the occurrence of various motor and 
non-motor symptoms (13-15, 17, 18). This scoring 
system can be recalculated for the Ayurvedic tridosha 
system based on each motor and non-motor symptom. 
First of all, all motor symptoms govern the movement of 
the body, which can be correlated with the Vata dosha as 
in the Ayurvedic literature (9, 19). So we can easily 
assign the motor symptom score as a Vata score (19). 
Similarly, we can determine the non-motor symptom 
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score as a tridosha score based on the available literature 
in Ayurveda as shown in table 1. The obtained tridosha 
score can be used to develop various predictive models 
for PD, which is a very rare practice in Ayurveda. 

In the age of digitization and artificial intelligence, 
machine learning (ML) is proving to be a very powerful 
tool for diagnosing and predicting diseases (20, 21). In 
Ayurveda, ML is also used for disease diagnosis, Prakriti 
determination, dosha analysis and much more (22-25). 
But very limited research has been done on diagnosing 
PD in light of Ayurveda, particularly through dosha 
analysis with ML. In this research, we will try to design a 
significant ML algorithm for PD detection. To achieve 
this goal, we used UPDRS II (16) and the NMSQ (18) 
diagnostic scaling system with various other health 
attributes such as age, sex, height and weight. For this 
purpose, different ML algorithms were applied and the 
best model was chosen according to the performance 
evaluation of each model. Since our main goal is to 
design the ML model based on Ayurvedic dosha 
responses, we determined the dosha behavior for all 
motor and non-motor symptoms listed in UPDRS II and 
NMSQ. Finally, we developed our own Ayurvedic dosha 
based scaling system derived from the UPDRS II and 
NMSQ scaling system. The obtained dosha score is 
finally used to train and test the model. Finally, we have 
reached our best model that can predict PD with high 
accuracy. In addition, we have also determined the dosha 
behavior for PD, which may help in understanding the 
symptoms and the dosha relationship in future research.    

Methods 
Study design and participants 

In this research, we selected our study 
participants with appropriate biomarker data from the 
Fox Insight (FI) dataset sponsored by the Michael J. 
Fox Foundation (26). In FI dataset there are different 
categorical data related to PD, through which we have 
taken the data tagged by “Your Movement Experiences” 
and “Your Non-Movement Experiences”, self-
assessment data relate to movement and non-movement 
experience of PD. The movement experience data is 
actually following the MDS-UPDRS II rating scale and 
the non-movement experience data is following the 
MDS-NMSQ rating scale format (16, 18). Besides these 
we have considered the other general informative data 
like age, sex, height (in centimeter) and weight (in 
kilogram) of the subject from the FI dataset with their 
respective motor and non-motor experienced data. We 
have derived BMI of the subject from the height and 
weight information by using formula- 

   (27). 
Here we have got total n=80,916 records of data 

including PD and Control subjects in which we have 
n=14,853 records of Male PD subjects, n=11,538 
records of Female PD subjects, n=13,571 records of 
Male Control subjects, and n=40,954 records of Female 
Control subjects. All these records are consisting of the 
collection of 13 UPDRS-II questionnaires data, 30 

NMSQ questionnaires data, including the information 
of age, sex, height and weight and derived BMI. 

Data preprocessing 
The data obtained were pre-processed and 

analyzed with IBM SPSS Version 28 (28). First, the 
imported data was processed for the missing value 
analysis (29). The incomplete data records were 
discarded or transformed according to the missing value 
types. The missing values for sex, height and weight of 
the subjects were discarded to avoid computational 
anomalies. The missing values related to symptoms 
were set to zero or no symptoms depending on the 
existence of records. Here we also considered the 
multiple entries of a single subject at different ages to 
better understand the combination of appearance and 
disappearance of symptoms over time. In addition, 
cumulative dosha score and BMI were calculated by 
SPSS. Also, multiple statistical analysis like mean with 
standard deviation (30), Pearson correlation (31) for 
each variable like gender, age and Vata, Pitta, Kapha 
dosha score were calculated by SPSS. Finally, the pre-
processed data for machine learning model design was 
exported.    

Dosha score determination 
As UPDRS-II sca le are cons is t ing of 

questionnaires related to motor symptoms and we know 
that the motor problem are related to Vata dosha (19), 
so we have marked each questionnaires score as Vata 
score based on the symptoms severity. In UPDRS-II 
scale each symptoms is scored from 0 to 4 depending 
upon the symptoms severity, where 0 is stating the 
normal condition or the symptom is not present and 1 to 
4 is marked as 1-slight, 2-mild, 3-moderate, and 4-
severe (14). Here we have assign the Vata score from 0 
to 4 as on the UPDRS-II score. The MDS-NMSQ 
questionnaires data have been scored by their respective 
involved dosha by 1 based on their presence in the 
subject as shown in the table 1. Finally, we have 
calculated the cumulative dosha score by adding up the 
each dosha score appeared in UPDRS-II and NMSQ 
responses and we get cumulative Vata, Pitta, and Kapha 
score. These three cumulative dosha scores, age, sex, 
and BMI are finally used to design the PD prediction 
model. 

Designing of mean score based PD predictive model 
The working principle of UPDRS-II, and NMSQ 

scale based PD detection model is based upon the mean 
value of the overall score (58-60). We have obtained the 
mean with standard deviation value for PD subjects for 
both Male and Female category. The subject with PD 
having predicted positive if the total score obtained 
from UPDRS-II, and NMSQ is greater than the mean 
score subtracted by standard deviation of the particular 
sex Male or Female category.  

 
The designed model was verified with our 

obtained dataset and the respective confusion matrix 
and accuracy score were obtained for model 
comparison.  
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Designing of Machine Learning based Ayurvedic PD 
predictive model. 

In the machine learning-based Ayurvedic 
predictive model, we used age, sex, BMI, and 
cumulative Vata, Pitta, and Kapha score as input to 
train the model. Here we used several machine learning 
classification algorithms like Logistics Regression (LR) 
(61), K-Nearest Neighbors (KNN) (62), Support Vector 
Machines (SVM) (63), Kernel Support Vector Machines 
(KSVM) (64), Naive Bayes (NB) (65), Decision Tree 
(DT) (66), Random Forest (RF) (67), and XGBoost (68) 
using scikit-learn (69) library of Python. We also 
applied the K-Fold cross-validation technique (70) to 
evaluate the best algorithm with the highest average 
accuracy. Before feeding the data for training and 
testing, we encoded (71) the categorical variable sex, 
followed by the feature scaling method for scaled 
variables such as Vata score, Pitta score, Kapha score, 
age, and BMI. After feature scaling (72), we used two 
different methods to develop our ML-based model. In 
the initial technique, we applied various dimension 
reduction algorithms (73) such as Principal Component 
Analysis (PCA) (74) and Linear Discriminant Analysis 
(LDA) (75) before applying the ML algorithm; and in 
another way we fed the data directly to train and test the 
ML algorithm without applying any dimension 
reduction algorithm. Finally, all these combinations of 
features and techniques were fed into the above ML 

algorithms and cross-validated with K-Fold of 10 
iterations, and the best model and its relative features 
and techniques were chosen according to average 
accuracy (70). Figure 1 below shows the block diagram 
for evaluating the best model among different ML 
algorithms for predicting PD. 

Figure 1. Block diagram for evaluating best ML 
algorithm. 

 

182

Table 1. List of MDS-NMSQ non-motor symptoms and their involved dosha score.
Non-Motor Symptoms Vata Pitta Kapha
Dribbling of saliva during the daytime (19) 1 0 0
Loss or change in your ability to taste or smell (32-34) 1 0 1
Difficulty swallowing food or drink or problems with choking(19) 1 0 0
Vomiting or feelings of sickness (nausea) (35) 1 0 0
Constipation (less than three bowel movements a week) or having to strain to pass a stool 
(36-38)

1 1 0

Bowel (fecal) incontinence (37, 39) 1 0 0
Feeling that your bowel emptying is incomplete after having been to the toilet (37) 1 0 0
A sense of urgency to pass urine that makes you rush to the toilet (40) 1 0 0
Getting up regularly at night to pass urine (40) 1 0 0
Unexplained pains (not due to known conditions such as arthritis) (41, 42) 1 1 0
Unexplained change in weight (not due to change in diet) (43) 1 0 0
Problems remembering things that have happened recently or forgetting to do things (44) 1 0 0
Loss of interest in what is happening around you or in doing things (43) 1 0 0
Seeing or hearing things that you know or are told are not there in (44) 0 1 0
Difficulty concentrating or staying focused (44) 1 0 0
Feeling sad, 'low' or 'blue' (43) 1 0 0
Feeling anxious, frightened or panicky (43) 1 0 0
Feeling less interested in sex or more interested in sex (43, 45, 46) 1 0 1
Finding it difficult to have sex when you try (47) 1 0 0
Feeling light-headed, dizzy or weak standing from sitting or lying (44) 0 0 1
Falling (19) 1 0 0
Finding it difficult to stay awake during activities such as working, driving or eating (44) 0 0 1
Difficulty getting to sleep at night or staying asleep at night (43, 44) 1 0 0
Intense, vivid or frightening dreams(48-50) 1 0 0
Talking or moving about in your sleep, as if you are 'acting out' a dream(48-51) 0 1 0
Unpleasant sensations in your legs at night or while resting, and a feeling that you need to 
move (52, 53)

1 0 0

Swelling of the legs (54, 55) 1 0 0
Excessive sweating (56) 1 1 0
Double vision (57) 1 0 0
Believing things are happening to you that other people say are not (44) 0 1 0

http://ijam.co.in
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For all models we generated the confusion matrix 
(76), receiver operating characteristic curve (ROC 
curve), and area under curve (AUC) (77, 78). Besides 
these we have also calculated the Sensitivity or True 
Positive Rate (TPR), Specificity or True Negative Rate 
(TNR), Precision or Positive Predictive Value (PPV), 
Negative Predictive Value (NPV), Fall-out or False 
Positive Rate (FPR), False Discovery Rate (FDR), Miss 
Rate or False Negative Rate (FNR), Accuracy (ACC), 
F1 Score (F1), and Matthews Correlation Coefficient 
(MCC) from the obtained confusion matrix for all our 
model (76). The confusion matrix is a very popular tool 
for evaluating the performance of the ML algorithm by 
comparing the actual value with the predicted value. 
The outputs of the confusion matrix for a binary 
classifier are True Positive (TP): where the output is 
predicted to be positive for an actual positive value, 
True Negative (TN): where the output is predicted to be 
negative for an actual negative value, False Positive 
(FP): where the output is predicted to be positive for an 
actual negative value, and False Negative (FN): where 
the output is predicted to be negative for an actual 
positive value (76). The other measurement scores from 
the obtained confusion matrix were calculated by the 
following formulas.  

 
Results 

By analyzing the mean of the UPDRS-II scores 
and the NMSQ score, we found that the overall mean 
(standard deviation) for PD is 22.622 (12.134). The 
mean (standard deviation) for male PD is 23.209 
(12.294) and for female PD is 21.866 (11.882). 
According to the PD prediction model using the mean, 
we found that each subject is predicted as a PD if   for 
male subjects and   for female subjects. For our 
obtained dataset, these models have a true positive or 
true PD for n=22,591 or 85.6% of subjects, a true 
negative or true control for n=50,087 or 91.9% of 
subjects, for n=3,800 or 14, 4% of subjects predicted a 

false negative or false control and false positive or false 
PD for n=4,438 or 8.1% of subjects. The accuracy of 
this model is 89.82% considering the other factors like 
sensitivity 0.8560, specificity 0.9186, precision 0.8358, 
negative predictive value 0.9295, false positive rate 
0.0814, false discovery rate 0.1642, false negative rate 
0.1440, f1 score 0.8458, and Matthews correlation 
coefficient 0.7699. The following figure 2 is showing 
the ROC curve of the model. 

Figure 2. ROC plot of the mean based PD predictive 
model with the AUC value 0.884 

 
After calculating the cumulative dosha score for 

all our tridosha in relation to the UPDRS II and NMSQ 
scores, we calculated the Pearson's correlation for all 
our considered variables for ML models shown in 
Figure 3. This figure and its value show the linear 
relationship of all these variables. 

Figure 3. Pearson’s correlation matrix of all variable 
used in ML. 

** Correlation is significant at the 0.01 level (2-tailed). 

Through this matrix we can observe that all three 
doshas are positively correlated with age, implying that 
with age all three doshas are significantly get vitiated. 
While the negative correlation with gender shows that 
the male subjects suffer more from dosha disorders than 
the females. Likewise, increasing age increases the risk 
of developing PD.  

Kapha 
Score

Kapha 
Score 1 Pitta 

Score
Pitta 
Score 0.665** 1 Vata 

Score
Vata 
Score 0.73** 0.757** 1 Sex

Sex -0.207** -0.157** -0.257** 1 BMI
BMI 0.005 0.012** -0.001 -0.004 1 Age
Age 0.094** 0.116** 0.219** -0.115** 0.014** 1
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In an ML-based PD prediction system, we found 
that KSVM without dimensionality reduction algorithm 
has the highest mean accuracy of 93% with a standard 
deviation of 0.28%. Figure 4 below shows a 

comparative bar chart of the mean accuracy with 
standard deviations for different ML algorithms with 
and without dimension reduction. 

Figure 4. Comparative bar chart of mean accuracy values with standard deviation of all applied ML algorithms 
with or without dimension reduction. (a) Represents the ML algorithms without dimensionality reduction. (b) 
Represents ML algorithms with PCA dimension reduction. (c) Represents ML algorithm with LDA dimension 

reduction. 

 

Here we found that except the NB algorithm, all 
the other algorithms have the higher average accuracy 
without the dimensionality reduction, and even the NB 
algorithm with LDA could not reach the highest 
accuracy among other algorithms. So, in this problem, 
dimensionality reduction like PCA or LDA may not 
play a significant role in achieving the accuracy, and we 

found that the ML algorithm without dimensionality 
reduction technique has the higher accuracy. The 
following table 2 shows the confusion matrix, figure 5 
shows the ROC curves with AUC, and figure 6 shows 
the line chart of different measured characteristic values 
of all considered ML algorithms without dimensionality 
reduction. 
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Table 2. Confusion matrix of the all ML algorithm 
tested on 20% data of the entire dataset.  

  
Figure 5. ROC curve and AUC of all considered ML 
algorithms generated from the test set obtained from 

the 20% of the whole dataset. 

 

Figure 6. Line chart showing the variations of 
different measured values from the obtained 

confusion matrix of all ML algorithms. 

 

Discussion 
In this research, we attempted to develop a PD 

prediction model based on Ayurvedic biomarkers such 
as the tridosha variation. The initial goal of this design 
is to develop a self-assessment diagnostic tool that 
allows an ordinary person to check PD status by 
answering some simple questionnaires without any 

special medical knowledge and expertise through the 
Ayurvedic diagnostic method. To achieve this goal, we 
considered the UPDRS and NMSQ scaling system for 
PD assessment (59). In the UPDRS scaling system, 
UPDRS II questionnaires are essentially designed for 
self-assessment recording systems of motor symptoms 
(16), and NMSQ questionnaires are for non-motor 
symptoms (18). In the first method, we developed a 
model by which the UPDRS II score and the NMSQ 
score were calculated and added, and the PD prediction 
is made on the basis that the obtained score is equal to 
or higher than the subtracted value of the Mean and 
standard deviation values obtained from our dataset for 
a specific gender category. In this method we did not 
use Ayurvedic biomarkers, age and BMI information. 
We used this model as a reference model for comparing 
our ML-based Ayurvedic PD prediction model. In the 
second method, we derived Vata, Pitta and Kapha 
scores from each UPDRS II and NMSQ attribute and 
calculated the cumulative dosha score and applied the 
different ML algorithms with the age, gender and BMI 
information of the subjects. After comparing each ML 
algorithm with our reference mean based model we 
have found for each ML based model have the higher 
accuracy score than the reference mean based model 
except Naive Bayes ML algorithm. This comparison 
proves that the Ayurveda-based ML algorithm can also 
be used to predict PD and shows the higher accuracy 
than our general mean-based self-assessed PD 
prediction model. This is one of the new findings in this 
research on an Ayurveda-based self-assessment PD 
diagnostic system. 

As a result, we achieved the highest accuracy of 
93%, which is almost 3% higher compared to our 
reference mean-based model using KSVM algorithm 
without applying dimensionality reduction. Apart from 
that, SVM, LR and XGB algorithm based models also 
have the higher accuracy near KSVM, and the accuracy 
difference is no more than 0.5%. Therefore, when 
choosing our best model among all these four models, 
we considered the FPR score as a reference. The FPR 
score actually expresses the false positive predictor 
score of any model. In the healthcare sector, false 
positive predictions generate unnecessary panic, 
increasing patient anxiety and also increasing 
unnecessary healthcare costs (79, 80). To account for 
this, we found that LR-based models had the lowest 
FPR value of 0.0405. In this context, the LR-based ML 
model turns out to be our best Ayurveda-based PD 
prediction model with an average accuracy of 92.66%. 

The final equations of our ML-based PD 
prediction model based on Ayurvedic Tridosha scores, 
age, BMI and sex according to logistic regression (81, 
82) is as follows. 

 
The logistics regression model is statistically 

significant (82), χ2(6) = 70703.137, p =0.000. The 
model explained 81.24 % (Nagelkerke R2 (83)) of the 
variance in Parkinson’s diseases and correctly classified 

ML True True False False 
Logistics 4421 10506 444 813
K-Nearest 4515 10351 599 719
Support 4446 10503 447 788
Kernel 4531 10466 484 703
Naive Bayes 4390 10075 875 844
Decision 4406 10148 802 828
Random 4466 10412 538 768
XGBoost 4562 10442 508 672

LR KNN SVM KSVM NB DT RF XGB
TPR 0.8447 0.8626 0.8494 0.8657 0.8387 0.8418 0.8533 0.8716
SPC 0.9595 0.9453 0.9592 0.9558 0.9201 0.9268 0.9509 0.9536
PPV 0.9087 0.8829 0.9086 0.9035 0.8338 0.846 0.8925 0.8998
NPV 0.9282 0.935 0.9302 0.9371 0.9227 0.9246 0.9313 0.9395
FPR 0.0405 0.0547 0.0408 0.0442 0.0799 0.0732 0.0491 0.0464
FDR 0.0913 0.1171 0.0914 0.0965 0.1662 0.154 0.1075 0.1002
FNR 0.1553 0.1374 0.1506 0.1343 0.1613 0.1582 0.1467 0.1284
ACC 0.9223 0.9186 0.9237 0.9267 0.8938 0.8993 0.9193 0.9271
F1 0.8755 0.8726 0.878 0.8842 0.8363 0.8439 0.8724 0.8855
MCC 0.8204 0.8129 0.8236 0.831 0.7577 0.7696 0.8139 0.8322
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92.6 % of cases. Males are 3.216 times more likely to 
exhibit PD than females, OR (95% Confidence Interval) 
3.216 (3.028 – 3.416), p=0.000. Increasing age is 
associated with an increased likelihood of exhibiting 
PD, OR 1.036 (1.034 – 1.039), p<0.001, but increasing 
BMI is associated with a reduction in the likelihood of 
exhibiting PD, OR 0.934 (0.929 – 0.94), p<0.001. 
Likewise, increasing Vata score is associated with an 
increased likelihood of exhibiting PD, OR 1.587 (1.574 
– 1.601), p<0.001, but increasing Pitta score, OR 0.546 
(0.526 – 0.567), p<0.001, and Kapha score OR 0.567 
(0.544 – 0.591), p<0.001, are associated with a 
reduction in the likelihood of exhibiting PD. 

Conclusion 
In summary, we have successfully found and 

developed the most suitable ML algorithm, namely 
logistic regression, to predict PD through the 
comparative analysis between different ML algorithms 
and their performance. Also, we described the linear 
relationship of our considered attributes by Pearson's 
correlation and finally obtained the likelihood factor of 
different attributes with PD. This relationship and the 
predictor model demonstrate the significant scientific 
evidence of dosha-based analysis and modeling for 
Parkinson's disease in the light of Ayurveda.  Although 
this research has several limitations, we did not apply 
the deep learning algorithms to develop this predictive 
model. Apart from that, besides UPDRS II motor 
symptoms and NMSQ non-motor symptoms, we did not 
consider other attributes such as previous medical 
history records, current health status, family history of 
neurological disorders, environmental exposure, 
lifestyle, etc. of PD available in the FI dataset. Each of 
these other symptoms can be correlated with the PD and 
with their respective dosha behavior, which can be done 
in future research. We have not included the Prakriti 
analysis due to unavailable data in the FI dataset. But 
the designed model guarantees the achieved accuracy of 
its excellence in the field of digital Ayurveda.   
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