

International Journal of Ayurvedic Medicine, Vol 15 (2), 2024; 564-569

Physiochemical and phytochemical analysis of *Karanthai legium* - Siddha herbomineral formulation

Research Article

Carolin P1*, Mariappan A2

1. PG Scholar, 2. Associate Professor, Department of Gunapadam, National Institute of Siddha, Tambaram Sanatorium, Chennai. Tamil Nadu. India.

Abstract

Siddha system of medicine is one of the holistic systems. The consumption of traditional medicine is also in upward trend. To manufacture any herbal drug the quality and safety of the drug is to be estimated. *Karanthai legium* (KL) is one of the herbomineral formulation indicated for *kiranthi (Skin disease), karappan (Eczema), soolai (Pain), yoni putru (Cervical cancer), kunmam (Ulcer)*. This study aims to develop standardization of *Karanthai legium* as per PLIM (Pharmacopeia Laboratory of Indian Medicine) guidelines. The test drug KL focused on Physico-chemical analysis, Phytochemical Analysis, Oraganoleptic character, Instrumental analysis such as heavy metal analysis, HPTLC Analysis, Aflatoxin, Pesticide residue, Specific pathogen and Microbial contamination. Physiochemical analysis report showed loss of drying KL is 14.96%, total ash is 0.92%, acid insoluble ash is 0.17%, water soluble ash is 0.50%,pH of KL is 5.45.The drug KL had HPTLC fingerprint analysis revealed the presence of nine phytocomponents at 254nm, eight phytocomponents at 366nm and six phytocomponents at 520nm.The heavy metal analysis showed no trace of heavy metal residue in KL. This study revealed the data regarding the physicochemical characterisation of *Karanthai legium*, which will be helpful in standardising the drugs and for further comparison studies.

Keywords: Spaeranthus amaranthoicdes, Karanthai legium, Siddha medicine, TLC, Physico-chemical analysis.

Introduction

Siddha system is one the traditional medicine has flourished well in South India. The traditional system supports the importance of medicinal plants to treat diseases (1).It based on herbal, mineral and metal preparation of drugs. Among them, herbal are in demand and many adulteration in raw drugs. One of the major issues that Siddha practitioners encounter is the lack of formal quality management guidelines for herbal medicines and their formulations (2). Hence, standardization of Siddha drug is needed for commercialization of Siddha formulations (3). This ensures the formulation's safety, quality and purity and it's used to explain all the steps required during the manufacturing process and quality control that results in a reproducible quality (4).

Siddha medicine is classified into internal (32 types) and external (32 types) medicine (5). Among them, *Legium* is one of the internal medicine, a semisolid preparation obtained by merely mixing up a powdered medicine or drug with honey, ghee or jiggery(6). *Karanthai legium*(KL) is one of the herbomineral drug mentioned in bogar aruliya vithiya

* Corresponding Author: Carolin P PG Scholar, Department of Gunapadam, National Institute of Siddha, Tambaram Sanatorium, Chennai. Tamil Nadu. India, India. Email Id: carolinpaul97@gmail.com saram 700 indicates for *kiranthi* (*Skin disease*), *karappan* (*Eczema*), *soolai* (*Pain*), *yoni putru* (*Cervical cancer*), *kunmam* (*Ulcer*). *The* plant *Spaeranthus amaranthoicdes* has major part in preparation having presence of steroids, alkaloids, sugars, phenolics, flavonoids, saponins, tannins. It is also one of the rejunivating drug, which prevent from disease and promote longevity of life.

In recent days, the demand for Siddha formulations has expanded globally due to their rising popularity and long-term stability. As a result, both domestically and globally, the commercialisation of Siddha medicine manufacture has drawn attention. For Siddha formulations, determining the necessary standards, quality control, and safety were imperative. Therefore, the processing units of Siddha pharmaceuticals must focus on producing standard, effective, genuine, safe, and high-quality drugs.

The aim of the study to analyse *Karanthai legium* by PLIM guidelines through physicochemical, phytochemical analysis and high performance thin layer chromatograph (HPTLC). This study will make a fingerprint for the *Karanthai legium* for further research in future.

Materials and Methods

Procurement and Authentication of raw drugs

The raw drugs were purchased from local raw drug seller, Chennai and authenticated by botanist (NISMB5352022), National Institute of Siddha, Chennai. S.

(Carolin P et.al., Physiochemical and phytochemical analysis of Karanthai legium						
Table: 1 Ingredients and their quantities of Karanthai legium (KL)							
Plant	Botanical	Famil	Part	Quantity			
Chukku	Zingiber	Zingib	Rhizo	1⁄4 Balam			
Milagu	Piper nigrum L.	Pipera	Fruit	1⁄4 Balam			
Thipilli	Piper longum	Pipera	Fruit	1⁄4 Balam			
Kadukkai	Terminalia	Combr	Fruit	1/4 Balam			

D .	Tiant	Dotanical	гашп	1 al t	Quantity
1	Chukku	Zingiber	Zingib	Rhizo	1⁄4 Balam
2	Milagu	Piper nigrum L.	Pipera	Fruit	1/4 Balam
3	Thipilli	Piper longum	Pipera	Fruit	1⁄4 Balam
4	Kadukkai	Terminalia	Combr	Fruit	1/4 Balam
5	Thandrik	Terminalia	Combr	Fruit	1/4 Balam
6	Vasambu	Acorus calamus	Aracea	Root	1/4 Balam
7	Indhuppu	Rock salt	-	Salt	1/4 Balam
8	Valuluvai	Celastrus	Celastr	Seed	1/4 Balam
9	Kostam	Saussurea	Astera	Root	1/4 Balam
10	Karunjee	Nigella sativa	Ranun	Seed	1/4 Balam
11	Omam	Trachyspermum	Apiace	Seed	1/4 Balam
12	Arasu	Ficus religiosa	Morac	Seed	1/4 Balam
13	Elam	Elettaria	Zingib	Seed	1/4 Balam
14	Manjal	Curcuma longa	Zingib	Rhizo	1/4 Balam
15	Karboga	Psoralea	Fabace	Seed	1/4 Balam
16	Seviyam	Piper nigrum L.	Pipera	Root	1/4 Balam
17	Vaividan	Embelia ribes	Myrsin	Seed	1/4 Balam
18	Anai	Scindapsus	Aracea	Root	1/4 Balam
19	Jathikai	Myristica	Myrist	Fruit	1/4 Balam
20	Shenbag	Michelia	Magno	Flower	1/4 Balam
21	Thalisam	Abies	Pinace	Leaf	1/4 Balam
22	Athimath	Glycyrrhiza	Fabace	Root	1/4 Balam
23	Jathipath	Myristica	Myrist	Root	1/4 Balam
24	Karantha	Spaeranthus	Astera	Root	200grams
25	Lavagam	Syzygium	Myrtac	Flower	¹ / ₄ Balam
26	Ghee				50 ml
27	Honey				50 ml

Procedure

Except the root of karanthai, all of the afore mentioned raw drugs (Table 1) (each¹/₄ Balam) were refined, ground, and converted into a fine powder. Karanthai root was washed, dried, and ground into a powder. The same amounts of powdered karanthai root to the net weight of the aforementioned raw drugs is taken and mixed well. This powder was added slowly and thoroughly combined with melted ghee. Finally, stirred with honey (7).

Standardisation according to PLIM Guideline

As per AYUSH - PLIM guideline (8), the trial drug Karanthai legium (KL) was tested its organoleptic properties, physical characteristics and phytochemical properties and also to assess the active principles and elements present in the drug.

Organoleptic Characters

The organoleptic characters of the sample drug were evaluated.1gm of the KL was taken and the state, appearance, nature, odour, and other morphological characters were viewed by the naked eye under natural light and results were noted. (Table 2)

Physicochemical Analysis

Physicochemical studies like total ash, watersoluble ash, acid soluble ash, acid-insoluble ash, water, and alcohol soluble extract, loss on drying at 105°C were done at Siddha Central Research Institute, Anna Government Hospital Campus, Arumbakkam, Chennai. Results were noted in (Table 3).

Preliminary Phytochemical Screening of Karanthai Legium

The preliminary phytochemical screening test was carried out for each extract (aqueous and ethanol extract) of KL as per the standard procedure mentioned here under. Phytochemical studies like the detection of alkaloids, carbohydrates, saponins, phenols, and tannins, Detection of Flavonoids, diterpenes, Quinones, Gum, and Mucilage were done at The Tamilnadu DR. M.G.R.Medical University, Chennai. The Preliminary phytochemical studies of aqueous & ethanol extract of KARANTHAI LEGIUM were done using standard procedures. The present study reveals that the bioactive compounds were present in all the extracts of KL. The results were presented in tables (Table 4)

Instrumental Analysis of Karanthai Legium

The test drug KARANTHAI LEGIUM (KL) was analysed to generate the fingerprint using Thin Layer Chromatography (TLC) and High-Performance Thin Layer Chromatography (HPTLC) in SIDDHA CENTRAL RESEARCH INSTITUTE, Anna Govt. Hospital Campus, Arumbakkam, Chennai.

Thin-layer Chromatography Methodology (TLC)

Applied 10 µl chloroform extract of drug KL on TLC plate using Camag's ATS4 applicator and

International Journal of Ayurvedic Medicine, Vol 15 (2), 2024; 564-569

developed by the mobile phase, Hexane: Ethyl acetate (7.5:2.5, v/v) up to 9 cm distance.

Sample Preparation for TLC

Sample (1 g) was dissolved in 10 ml of chloroform and then sonicated for 15 minutes and filtered. This solution was used for TLC.

Scanning

After development, the plate was photo documented using Camag's TLC Visualiser under UV 254 nm and UV 366 nm and then scanned using Camag's Scanner 4 at (D2 lamp/Absorption mode, Hg lamp/Fluorescent mode) fingerprint profiles of the extract were documented. Then the plate was dipped in 5% vanillin-sulphuric acid reagent followed by heating at 105°C till the development of coloured spots. The plate was then photo-documented in white light and scanned at 520 nm for fingerprint profile. (Table 5)

High Performance Thin Layer Chromatography (HPTLC)

Sample preparation

The sample KL was prepared in polar solvent sonicated and refluxed the solution was filtered with Whatman 41 paper and re-filtered with a syringe filter (0.45 μ). Filtered solutions were applied to HPTLC 60 silica gel glass-backed layers (Merck).

Scanning

For the fingerprinting, a Camag TLC scanner 3 linked to Win CATS software was set at 350 nm, after multi-wavelength scanning between 250 and 400 nm in the absorption mode had first been tried. A chromatographic finger print was developed for the detection of phytoconstituents present in each sample and the irrespective Rf values were tabulated.

Test for Heavy Metals

To determine the heavy metals such as mercury, arsenic, lead, and cadmium concentrations in the test drug was performed by Atomic Absorption Spectroscopy [AAS] Model AA 240 series. KL sample was digested with 1 mol/L HCl for determination of arsenic and mercury. Results were tabulated in (Table 9)

Microbial Contamination

Test for Specific Pathogen

Test sample KL was directly inoculated into the specific pathogen medium (EMB, DCC, Mannitol, Cetrimide) by the pour plate method. The plates were incubated at 37oC for 24 - 72h for observation. The presence of specific pathogens is identified by their characteristic colour concerning the pattern of colony formation in each differential media. Results were tabulated in (Table 10)

Pesticide Residue Analysis

Extraction Test sample *Karanthai legium* was extracted with acetone and followed by homogenisation

for a brief period. Further filtration was allowed and subsequent addition of acetone to the test mixture. Heating of test sample *Karanthai legium (KL)* was performed using a rotary evaporator at a temperature not exceeding 40°C until the solvent had almost completely evaporated. The balance residue will be dissolved using toluene and filtered through a membrane filter. Results were noted and tabulated in (Table 11)

Aflatoxin

Aflatoxins-producing fungi can contaminate crops in the field, at harvest, and during storage. Exposure to aflatoxins causes an increased risk of liver cancer. The procedure for the detection of Aflatoxin was recommended by WHO (2007).

Procedure

Standard aflatoxin was administered in volumes of 2.5 L, 5 L, 7.5 L, and 10 L to the surface of a precoated TLC plate. Similar to this, the test sample (KL) was placed, allowed the spots to dry, and then the chromatogram was developed in an unsaturated chamber with a solvent system made up of a chloroform, acetone, and isopropyl alcohol (85: 10: 5) mixture until the solvent front had moved not less than 15 cm from the origin. Mark the solvent off, then take the plate out of the developing chamber and let it air dry. Examine the plate under 365nm UV light to find the spots on it. Results were tabulated in (Table 12).

Results

Organoleptic character of *Karanthai legium* were evaluated and showed in table 2. It was done to assess the quality of the poly herbal sample.

Table 2: C	Organoleptic	characters	of Karanthai	<i>legium</i> (KL)

S.NO	PARAMETER	RESULT	
1	State	Semisolid	
1	Nature	Smooth Surface	
2	Odor	Aromatic	
3	Touch / Consistency	Soft	
4	Flow Property	Non- free flowing	
5	Appearance	Intense Greenish	

The physicochemical analysis of *karanthai legium* was done and noted in table 3.

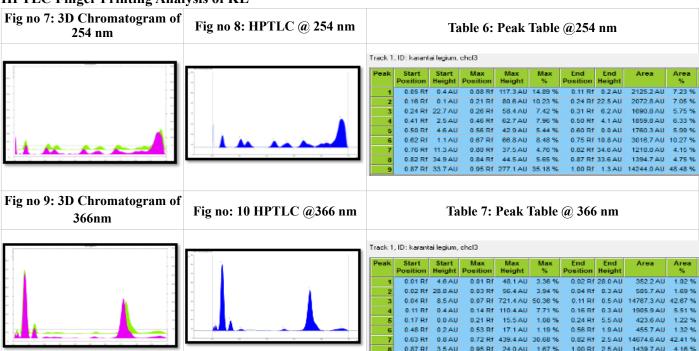
Table 3: Physicochemical	parameters of <i>Karanthai legium</i>
	P

S.NO	NAME OF THE TEST	Value (%)
1	Loss of Drying (% w/w)	14.96
2	Total ash (% w/w)	0.92
3	Water soluble ash(% w/w)	0.50
4	Acid insoluble ash (% w/w)	0.17
5	Water soluble extractives (% w/w)	33.32
6	Alcohol soluble extractives (% w/w)	42.02
7	Hexane extractive value (% w/w)	43.61
8	pH(10% solution)	5.45
9	Rancidity	Nil

Carolin P et.al., Physiochemical and phytochemical analysis of Karanthai legium

Phyto-chemical Screening

The Preliminary phytochemical studies of Aqueous and Ethanol extract of *Karanthai Legium* (KL) were done using standard procedures. The results were presented in tables 4. The present study reveals that the bioactive compounds were present in all the extracts of KL.


Table No 4: Phytochemical Analysis of Karanthailegium (Aqueous and Ethanol extract)

S.No.	Phyto- chemicals	Test Name	H ₂ O Extract	Ethanol Extract
1	Alkaloids	Dragendorff's Test Wagner Test	+ ve + ve	+ ve + ve
2	Carbo- hydrates	Molisch's Test Benedict Test	+ve +ve	+ ve + ve
3	Phenols	Ferric Chloride Test	+ve	+ ve
4	Tannins	Gelatin Test	+ve	-ve
5	Flavonoids	Alkaline Reagent Test Lead acetate	+ve +ve	+ ve + ve
6	Diterpenes	Copper Acetate Test	+ve	+ ve
7	Quinones	Test for Quinones	-ve	-ve
8	Gum & Mucilage	Test for Gum & Mucilage	-ve	-ve
9	Saponin	Foam Test	-ve	-ve

Instrumental Analysis

TLC and HPTLC fingerprinting can be employed for the purpose of creating quality standards for polyherbal compositions (9,10). For sample KL fingerprint was mentioned below.

HPTLC Finger Printing Analysis of KL

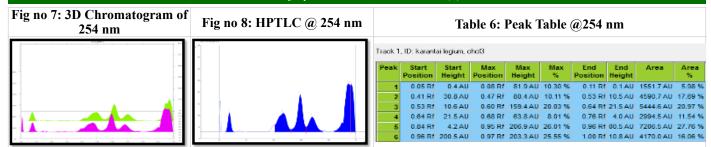


Figure no.1: TLC Chromogram of KL					
	a		63 67 67		
	··· ··		0.0- 0.0- 0.0-		
	• • • • • • • •		84- 83-		
			62		
			<u> </u>		
		λ=366 nm	λ=520 nm		
λ=254nm	λ=366nm	(Derivatized)	(Derivatized)		

Rf and color of spots Table 5: TLC Rf and colour of spots

λ=254 nm		λ=30	λ =366 nm (Derivatize				
Rf	Colour	Rf	Colour	Rf	Colour	Rf	Colour
0.07	Green	0.01	Cyan blue	0.06	Yellow	0.07	Brown
0.22	Green	0.07	Fluores cent green	0.13	Blue	0.22	L.yello w
0.27	Green	0.13	Fluores cent Blue	0.22	Green	0.41	Pink
0.46	Green	0.22	Blue	0.28	Green	0.48	Violet
0.57	Green	0.27	Blue	0.41	L. violet	0.60	Violet
0.68	Green	0.31	Blue	0.48	Ash colour	0.69	Grey
0.73	L. green	0.42	Blue	0.60	White		
		0.53	Blue	0.69	Grey		
		0.55	Pink	0.75	Blue		
		0.73	Fluores cent blue				

International Journal of Ayurvedic Medicine, Vol 15 (2), 2024; 564-569

Heavy Metal Analysis of KL

The heavy metal analysis showed that there were no traces of heavy metal residues such as lead, arsenic, cadmium, mercury to ensure the safety of the drug KL.

Table 9:	Heavy	metal	analysis	of KL
----------	-------	-------	----------	-------

S.No	PARAMETERS	UNITS	RESULTS
1	Lead as Pb	mg/kg	BDL (DL:0.1)
2	Arsenic as As	mg/kg	BDL (DL:0.1)
3	Cadmium as Cd	mg/kg	BDL (DL:0.1)
4	Mercury as Hg	mg/kg	BDL (DL:0.1)

BDL: Below Detectable Level; DL: Detectable level

Microbial Contamination

No growth /colonies were observed in any of the plates inoculates with the Karanthai legium (KL). This revealed that the drug KL was free from the viable microorganisms and the absence of total bacterial and fungal count which may indicates that the drug KL has good quality and safer drug.

Table 10: Microbial contamination of KL

S.No	PARAMETERS	UNITS	RESULTS
1	APC – Bacteria	cfu/g	1.25×104
2	APC – Fungi	cfu/g	5×10 ³

APC: Aerobic Plate Count; cfu: colony forming unit

Pesticide Residue of KL

The drug KL showed that there were no traces of pesticides residues such as Organochlorine, Organo phosphorus, Organocarbamates and pyrethroids in the sample provided for analysis.

Table 11. I esticide residue of KL			
Pesticide residue	Sample KL	AYUSH Limit (mg/kg)	
I. Organo Chlorine Pesticides			
Alpha BHC	BQL	0.1mg/kg	
Beta BHC	BQL	0.1mg/kg	
Gamma BHC	BQL	0.1mg/kg	
Delta BHC	BQL	0.1mg/kg	
DDT	BQL	1mg/kg	
Endosulphan	BQL	3mg/kg	
II.Org	ano-Phosphorus P	esticides	
Malathion	BQL	1mg/kg	
Chlorpyriphos	BQL	0.2 mg/kg	
Dichlorovos	BQL	1mg/kg	
II	I. Organo carbama	ates	
Carbofuran	BQL	0.1mg/kg	
	III.Pyrethroid		
Cypermethrin	BQL	1mg/kg	

Table 11: Pesticide residue of KL

BQL - Below quantification limit

Aflatoxin for KL

The results shows that there were no spots were being identified in the test sample KL loaded on TLC plates when compare to the standard which indicates that the sample were free from Aflatoxin B1, Aflatoxin B2, Aflatoxin G1 and Aflatoxin G2.

AFLATOXIN	Sample KL	AYUSH SPECIFICATION LIMIT
B1	Not Detected-Absent	0.5 ppm (0.5mg/kg)
B2	Not Detected-Absent	0.1 ppm (0.1mg/kg)
G1	Not Detected- Absent	0.5 ppm (0.5mg/kg)
G2	Not Detected- Absent	0.1 ppm (0.1mg/kg)

Table 12: Aflatoxin for Karanthai Legium

Discussion

Traditional wisdom has claimed that herbal preparations are safe to use, and more and more people throughout the world are consuming them. It is critical to standardise herbal formulations in order to evaluate the drug's effectiveness, safety, and purity(9). The drug Karanthai (Spaeranthus amaranthoicdes) is one of the kaya karpam (rejuvenating herb) for prevention of disease and increase longevity of life The loss on drying of sample KL is 14.96% indicates the stability and shelf life of the drug KL is good. The total ash value of KL is 0.92% shows that the drug KL has less contamination and adulteration and it is safe. When acid insoluble ash value is low indicates the quality of the drug. Here, acid insoluble ash value of KL is 0.17%. Hence, it represents the superior quality of the drug KL.

The percentage of soluble matters present in the drug is determined by the values of water soluble ash for KL is 0.50%. Water-soluble extractive value plays an important role in evaluation of crude Drugs and it is 33.32 % in Karanthai legium. The alcohol-soluble extractive value was also indicative for the same purpose as the water-soluble extractive value and it is42.02% for Karanthai legium. Hexane extractive value plays an important role in evaluation of crude Drugs and it is 43.61 % in Karanthai legium . The pH of the drug Karanthai legium is 5.45 which is acidic in nature and it is essential for its bioavailability and effectiveness. The result revealed that the drug has good quality and purity and it indicates no adulteration in the raw drug KL. The Phytochemical screening of KL reveals th e presence o f Alkaloids, Carbohydrates, Phenols, Tannins, Flavonoids, Diterpenes. TLC finger printing analysis of the sample

Carolin P et.al., Physiochemical and phytochemical analysis of Karanthai legium

KL reveals the presence of seven prominent peaks corresponds to presence of three versatile phytocomponents present within it. Rf value of the peaks ranges from 0.07 to 0.73.

The sample KL has HPTC finger printing analysis revealed the presence of nine versatile phytocomponents present at 254nm. Rf value of the peaks ranges from 0.05 to 0.87.At 366nm, presence of eight versatile phytocomponents present with Rf value of the peaks ranges from 0.01 to 0.87. At 520nm, presence of six versatile phytocomponents present with Rf value of the peaks ranges from 0.05 to 0.96.

The heavy metal analysis showed that there were no traces of heavy metal residues such as lead, arsenic, cadmium, mercury to ensure the safety of the drug KL. As a result of these practises, pesticide residues from agricultural fumigations, soil treatments, and preor post-harvest periods accumulate on medicinal plants. Absence of total bacterial and fungal count which may indicates that the drug KL has good quality and safer drug. Organo chlorine, Organo phosphorus, and Pyrethroid residues were not detected in the sample KL. From Aflatoxin study, the drug KL is non toxic and there is no contamination and does not act as a carcinogenic property.

Conclusion

This study ensures that *Karanthai legium* (KL) has all properties of a *legium*, specified in the PLIM guidelines. It gives information about physicochemical, phytochemical analysis and HPTLC fingerprint extracts which will be useful in quality assessment of the drug, purity and batch comparison studies. Hence, the Phytochemical and physicochemical analysis of the drug is the first step for further assessing toxicological and validating pharmacological activities.

Acknowledgment

The Author would like to thank Head of the Department, Department of Gunapadam, The Director, National Institute of Siddha, for the support extended.

Conflict of Interest

The authors have declared no conflict of interest in this study.

Reference

- 1. Sujith Thatipelli et.al, Chemical Standards and HPTLC Finger Print Profiles of a Siddha Polyherbal Formulation - Kadukkai Legiyam, International Journal of Ayurvedic Medicine, Vol 12 (4), 922-926.
- 2. Remesh Chandran T S et.al., A Preliminary Pharmacognostical and Physico Chemical Assay of Shalmali moola Granules, International Journal of Ayurvedic Medicine, Vol 12 (2), 314-317.
- 3. Shankar D, Unnikrishnan PM, Venkatasubramanian P. Need to develop inter-cultural standards for quality, safety and efficacy of traditional Indian System of Medicine. Curr Sci 2007;92:1499-505.
- 4. Prem Shankar Pandey, An Attempt to Standardize Swarna Makshika - A Mineral Drug of Ayurveda, International Journal of Ayurvedic Medicine, 2019, 10(4), 333-337.
- 5. Thagarajan, Gunapadam part 2&3, Department of Indian medicine of homeopathy, edition 2004, pg: 56.
- 6. Sambasiva pillai T.V, Dictionary of medicine, chemistry, botany and allied science, The research institute of Siddhar's science, volume 1 part 2 pg no:953
- 7. Jeevaga Bharathi,Boga Munivar Aruliya Vaithiya Saram 700,September 2011,Pg.No:163-166.
- Lohar, Protocol for Testing Of Ayurvedic, Siddha And Unani Medicines. Ghaziabad: Government Of India, Department Of Ayush, Ministry Of Health & Family Welfare, Pharmacopoeial Laboratory For Indian Medicines; 2008; P.21, 40-47
- 9. Srisakthilogisha M, Nivetha G, Phytochemical and Physicochemical analysis of Siddha polyherbal formulationKaranthaiChooranam, International Journal of Ayurvedic Medicine, Vol 14 (1), 2023; 65-70.
